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Abstract
The Pauli Hamiltonian for the electron moving in the magnetic field of a straight
current with an axially symmetric distribution of current density possesses
N = 3 broken supersymmetry. We study the ground state energy for the
electron moving in this field. The asymptotic behaviour of ground state energy
for small total angular momentum is obtained.

PACS numbers: 1130J, 0365

1. Introduction

The motion of the electron in a magnetic field has been the subject of interest for a long time.
The eigenvalue problem for the charged spin- 1

2 particle in a constant homogeneous magnetic
field was investigated for the first time by Landau in the early days of quantum mechanics
and the exact expressions for eigenstates and eigenenergies were obtained. Later a number of
electromagnetic fields for which the eigenvalue problem can be solved exactly [1] were found.
We would like to point out the interesting paper [2] where the quantum motion of the electron
in a rotating magnetic field was solved exactly. Nevertheless for one of the simplest possible
magnetic field configurations, namely, that of the current-carrying wire, it is impossible to
obtain the exact solution of the corresponding eigenvalue problem. The energy spectrum and
eigenstates of the charged particle with spin 1

2 in the magnetic field of the current-carrying
wire was determined numerically in [3]. The classical motion of the charged particle in this
field was studied in [4]. In contrast to the case of the charged particle the eigenvalue problem
for the neutral spin- 1

2 particle moving in the magnetic field of the current-carrying wire can
be solved exactly in different ways: by using supersymmetry in coordinate space [5], by
differential equation techniques [6] and by using supersymmetry in the momentum space [7].
Surprisingly, the energy spectrum in this case obeys the hydrogenic Rydberg formula.

An important aspect of the motion of the electron in the magnetic field is the realization
of the supersymmetry (SUSY) in this case (see reviews [8–10]). It was shown that N = 2
SUSY is realized in the case of an arbitrary two-dimensional magnetic field Bx = By = 0,
Bz = Bz(x, y) and the three-dimensional one which possesses the following symmetry with
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respect to the inversion of coordinates B(−r) = ±B(r) [8–12]. The field of the magnetic
monopole is one of the examples where SUSY is realized in the three-dimensional case [11].
It was also shown that the electron motion on the surface orthogonal to the magnetic field
possesses N = 2 SUSY [13]. In our recent papers [14, 15] and the papers by Nikitin [16, 17]
new three-dimensional magnetic fields in which the motion of the electron is supersymmetrical
were found. Another novel aspect lies in the fact that in the magnetic fields considered SUSY
with two, three and four supercharges is realized. In particular, in [15] we showed that the
motion of the electron in the magnetic field of a straight current with an axially symmetric
distribution of the current density possessesN = 3 SUSY. This case just includes the magnetic
field of the current-carrying wire. In [18] we studied the equation for the zero-energy ground
state of the electron moving in the magnetic field of a straight current. It was shown that
this equation does not have the square integrable solution and SUSY is broken. Thus in the
considered case the ground state has a non-zero energy level.

The aim of this paper is to study the ground state and the corresponding energy level for
the electron moving in the magnetic field of a straight current.

2. SUSY of the electron in the magnetic field of a straight current with axial symmetry

The Pauli Hamiltonian for the electron moving in the magnetic field reads

H = 1

2m

(
p − e

c
A
)2

− g
eh̄

4mc
σB (1)

where σα are the Pauli matrices, A is the vector potential and B = rotA is the magnetic field.
The Hamiltonian (1) can be rewritten in the following form:

H = Q2
0 − (g − 2)

eh̄

4mc
σB (2)

where

Q0 = 1√
2m

σ
(
p − e

c
A
)
. (3)

Note that for the electron the gyromagnetic ratio g only slightly differs from 2; namely,
g = 2.0023. It is worth stressing that taking into account the anomalous magnetic moment
of the electron (g > 2) leads to the so-called anomalous electron trapping by the magnetic
fields [19–22]. These problems are outside the scope of our paper. We put g = 2. In this case
the Pauli Hamiltonian possesses SUSY and Q0 is called the supercharge.

In this paper we consider the motion of an electron in the magnetic field of a straight
current. Let us assume the current to be parallel to the z axis with an axially symmetric
distribution of the current density. The vector potential in this case reads

Ax = Ay = 0 Az = A(ρ) (4)

where ρ =
√
x2 + y2.

Recently we showed that in this case the Pauli Hamiltonian possesses N = 3 SUSY [15];
namely, in additional to Q0 we have two more supercharges

Q1 = iσxIxQ0 Q2 = iσyIyQ0 (5)

where Ix and Iy are the inversion operators of x and y axes respectively. We can easily check
that supercharges fulfil the following SUSY algebra:

{Qα,Qβ} = 2δα,βH α, β = 0, 1, 2

[Qα,H ] = 0.
(6)
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As a result of the axial symmetry the z component of the total angular momentum
Jz = Lz + Sz is the integral of motion and commutes with the Hamiltonian, i.e. [Jz,H ] = 0;
here Lz is the z component of angular momentum, Sz = h̄σz/2 is the z component of the
spin- 1

2 operator. In addition, Jz satisfies the following permutation relations:

[Jz,Q0] = 0 (7)

{Jz,Q1} = {Jz,Q2} = 0. (8)

In this paper we consider the case g = 2 when the Pauli Hamiltonian possesses SUSY
and can be written as the squared supercharge Q0. This fact is essentially used in the next
sections for solving the eigenvalue problem (see equation (21)). It is necessary to stress that
the motion of an electron in the magnetic field of a straight current possesses SUSY with three
supercharges. However, in fact, to solve the eigenvalue problem we use only one of them, Q0.
Nevertheless, due to the fact of existence of N SUSY one can say that the degeneracy of the
non-zero energy levels is equal to 2[N/2], where square brackets mean the integer part of the
number [12]. Thus, in our case (N = 3) the non-zero energy levels are twofold degenerate.

3. The eigenvalue problem

Due to the axial symmetry it is convenient to rewrite the Hamiltonian in the polar coordinates

H = − h̄2

2m

1

ρ

∂

∂ρ
ρ
∂

∂ρ
+

1

2m

1

ρ2

(
−ih̄

∂

∂φ

)2

+
1

2m

(
−ih̄

∂

∂z
− e

c
A(ρ)

)2

− g
eh̄

4mc
σB. (9)

The coupling of the spin with magnetic field depends on φ

σB = A′(ρ)(σx sin φ − σy cosφ) (10)

where A′(ρ) = ∂A(ρ)/∂ρ. This dependence can be removed using the unitary transformation

ψ̃ = eiφσz/2ψ (11)

where the new wavefunction satisfies the following condition:

ψ̃(φ + 2π) = −ψ̃(φ). (12)

As a result of the unitary transformation equation (10) becomes

eiφσz/2σBe−iφσz/2 = −A′(ρ)σy. (13)

For the Pauli Hamiltonian after the unitary transformation we obtain

H̃ = eiφσz/2He−iφσz/2 = − h̄2

2m

1

ρ

∂

∂ρ
ρ
∂

∂ρ
+

1

2m

1

ρ2

(
−ih̄

∂

∂φ
− h̄

σz

2

)2

+
1

2m

(
−ih̄

∂

∂z
− e

c
A(ρ)

)2

+ g
eh̄

4mc
A′(ρ)σy. (14)

Note that after the unitary transformation the operator −ih̄ ∂
∂φ

= J̃z represents a new operator
of the z component of the total angular momentum.

We can separate variables and represent the wavefunction as follows:

ψ̃ = eijzφeikz 1√
ρ
R(ρ) (15)

where k is the wavevector of the electron motion along the z axis and jz = ± 1
2 ,± 3

2 , . . . is the
eigenvalue of the z component of the total angular momentum in the units of h̄. The radial
part R(ρ) of the eigenfunction satisfies the conditions

R(0) = R(∞) = 0. (16)
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Note that R(ρ) must tend to zero at ρ → 0 at least as
√
ρ or more quickly. Then the

wavefunction ψ̃ will be finite at ρ = 0.
The equation for R(ρ) reads

HρR(ρ) = ER(ρ) (17)

where the radial part of the Pauli Hamiltonian (14) has the form

Hρ = h̄2

2m

(
− ∂2

∂ρ2
+

1

ρ2

[(
jz − σz

2

)2
− 1

4

]
+
(
k − e

h̄c
A(ρ)

)2
+
e

h̄c
A′(ρ)σy

)
. (18)

It is convenient to rewrite equation (17) and the radial part of the Hamiltonian (18) in
dimensionless form. Let us put A(ρ) = A0a(ρ/ρ0), where the constant A0 > 0 has the
same dimension as the vector potential, a(ρ/ρ0) is the dimensionless function, ρ0 is the unit
of measurement of distance ρ. We choose ρ0 = h̄c/|e|A0. Then in a dimensionless form
equation (17) reads

HξR(ξ) = εR(ξ) (19)

where

Hξ = − ∂2

∂ξ 2
+

1

ξ 2

[(
jz − σz

2

)2
− 1

4

]
+ (κ + a(ξ))2 − a′(ξ)σy. (20)

We have introduced the notations ε = 2mEρ2
0/h̄

2, κ = kρ0 and ξ = ρ/ρ0, which are
dimensionless energy, wavevector and distance, respectively. Here a′(ξ) = ∂a(ξ)/∂ξ .

The Hamiltonian Hξ can be written in the form

Hξ = Q2 (21)

where

Q = −iσx
∂

∂ξ
+ f σz +

jz

ξ
σy

f = κ + a(ξ).
(22)

Note that this is a result of equation (2) for g = 2 when the Pauli Hamiltonian possesses SUSY.
The operator Q is the radial part of the supercharge Q0 written in the polar coordinates.

It is important that the radial part of the Hamiltonian in the SUSY case (g = 2) is the
squared operator Q. Then the eigenvalue problem reads

QR(ξ) = qR(ξ) (23)

and the energy levels are squared eigenvalues of equation (23) ε = q2.
Consider the representation of the Pauli matrices for which σy is the diagonal matrix,

namely

σy =
(

1 0
0 −1

)
σz =

(
0 1
1 0

)
σx =

(
0 −i
i 0

)
. (24)

Explicitly equation (23) is a set of two equations for the components R1 and R2 of the radial
part of the wavefunction

jz

ξ
R1 +

(
− ∂

∂ξ
+ f

)
R2 = qR1 (25)(

∂

∂ξ
+ f

)
R1 − jz

ξ
R2 = qR2. (26)
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This set of the first-order differential equations can be transformed into the second-order
differential equation for one of the components of the wavefunction. Just representation (24)
is convenient for this purpose. From (26) we obtain

R2 = 1

jz/ξ + q

(
∂

∂ξ
+ f

)
R1. (27)

In order to avoid a singularity we assume that jz and q have the same signs. Then, because
ξ � 0, the dominator in (27) cannot equal zero.

When jz and q have the opposite signs it would be convenient to express R1 over R2, but
it is not necessary to do this in an explicit form. For this, note that changing

q → −q κ → −κ a(ξ) → −a(ξ) (28)

leads to R1 → R2 and R2 → R1. Therefore in order to obtain the case for which jz and q
have the opposite signs it is necessary to apply (28) to the case for which jz and q have the
same signs.

Substituting (27) into (25) we obtain the following equation for R1:(
− ∂

∂ξ
+ f + u

)(
∂

∂ξ
+ f

)
R1 +

j 2
z

ξ 2
R1 = q2R1 (29)

where we have introduced the notation

u = − jz/ξ
2

jz/ξ + q
. (30)

Equation (29) is defined on the half-line ξ � 0 with the boundary conditions (16). As we
see, the operator acting on R1 in (29) is non-Hermitian and contains the first-order derivative.
This operator can be transformed to the Hermitian form and the first-order derivative will be
eliminated using the substitution

R1 = e
∫

dξ u/2F1(ξ) =
√
jz/ξ + qF1(ξ). (31)

Then the equations for F1(ξ) can be written in the form[
a+a− +

j 2
z

ξ 2

]
F1 = q2F1 (32)

where

a± = ∓ ∂

∂ξ
+ f + u/2. (33)

Note that F1 satisfies the boundary conditions

F1(0) = F1(∞) = 0 (34)

and equation (32) similarly to (29) is defined on the half-line. In order to satisfy (16) F1(ξ)

must tend to zero at ξ → 0 at least as ξ or more quickly.
Thus, we reduced the set of two second-order differential equations (19) to the one second-

order differential equation (32). This became possible due to equation (21), where the radial
part of the Pauli Hamiltonian is written as a squared first-order differential operator.

We are interested in the square integrable solutions of equation (32). This equation has no
square integrable solutions for q = 0. Indeed, the eigenvalues of the operator a+a−, which acts
in the space of the square integrable functions, are positive, including also the zero eigenvalue.
Thus, the eigenvalues of the operator a+a− + j 2

z /ξ
2 are positive without the zero eigenvalue.

Therefore, equation (32) has no square integrable solutions for q = 0. Thus, we can conclude
that for the electron moving in the magnetic field of a straight current the SUSY is broken and
the energy of the ground state is non-zero.
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4. Ground state: exact solution for the vector potential 1/ρ

Let us first consider the case a(ξ) = −γ /ξ for which the eigenvalue problem can be solved
exactly [1]. The sign ‘−’ is written for convenience. We consider this exactly solvable case
to verify on its basis the result obtained in section 5.

The Hamiltonian in this case reads

Hξ = − ∂2

∂ξ 2
+

1

ξ 2

[(
jz − σz

2

)2
− 1

4
− γ σy

]
+

(
κ − γ

ξ

)2

. (35)

The spin and coordinate variables in the eigenvalue problem equation can be separated and the
eigenstate can be written in the form

R(ξ) = χϕ(ξ) (36)

where ϕ(ξ) satisfies the equation[
− ∂2

∂ξ 2
+
λ

ξ 2
+

(
κ − γ

ξ

)2
]
ϕ(ξ) = εϕ(ξ) (37)

and χ satisfies the equation[(
jz − σz

2

)2
− 1

4
− γ σy

]
χ = λχ. (38)

From the last equation we obtain

λ = λ± = j 2
z ±

√
γ 2 + j 2

z . (39)

Equation (37) is the textbook equation, which can be solved exactly using differential
equation techniques or the factorization (supersymmetric) method. After factorization
equation (37) reads

b+b−ϕ(ξ) + ε0ϕ(ξ) = εϕ(ξ) (40)

where

b± =
(

∓ ∂

∂ξ
+ α − β

ξ

)
. (41)

α, β and the energy of factorization ε0 satisfy the following equations:

β(β − 1) = γ 2 + λ (42)

αβ = κγ (43)

ε0 = κ2 − α2. (44)

Equation (42) has two solutions, but only one of them

β = 1
2 +

√
1
4 + γ 2 + λ (45)

gives the necessary boundary condition (16) for the wavefunction at ξ = 0.
From equation (40) for the wavefunction of the ground state ϕ0(ξ) with the energy ε0 we

have the equation b−ϕ0(ξ) = 0, the solution of which is

ϕ0(ξ) = Cξβe−αξ . (46)

Solution (45) givesϕ0(0) = 0, which satisfies (16). In order to satisfy the conditionϕ0(∞) = 0
we must choose α = kγ /β > 0.
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For the energy of the ground state with the fixed jz and fixed spin state which is given by
equation (38) we obtain

ε0 = κ2

(
1 − γ 2

(1/2 +
√

1/4 + γ 2 + λ)2

)
. (47)

Note that λ takes two values, given by (39), which correspond to two spin states. As we see
from (47), ε0 takes the lowest energy value for λ = λ−. Thus, finally for the energy of the
ground state with the fixed total angular momentum jz we obtain

ε0 = κ2


1 − γ 2

(1/2 +
√

1/4 + γ 2 + j 2
z −√

γ 2 + j 2
z )

2


 (48)

where jz = ±1/2,±3/2, . . . .
Let us consider jz as a parameter and put it equal to zero. It is interesting to note that in this

case and for |γ | � 1/2 the ground state energy takes the smallest possible value ε0 = 0. The
asymptotic behaviour of the ground state energy for small jz and |γ | � 1/2 is the following:

ε0 = κ2

γ 2
j 2
z jz → 0. (49)

Note that really jz cannot take zero value. Therefore, the energy of the ground state is
non-zero. This coincides with the result obtained at the end of section 3.

5. Energy of the ground state for small jz

In this section we derive the ground state energy in the limit of jz → 0 for the case of an arbitrary
vector potential a(ξ). It is possible to do this using equation (32) obtained in section 3. The
second term j 2

z /ξ
2 for a small jz in this equation can be treated as a perturbation.

In the zero approximation, i.e. when the term of perturbation is neglected, the energy of the
ground state can be equal to zero. The function F1 in this case satisfies the equation aF1 = 0
and reads

F1 = C√
jz/ξ + q

e− ∫ f (ξ) dξ = C√
jz/ξ + q

e−κξ−∫ a(ξ) dξ . (50)

Then

R1 = Ce− ∫ f (ξ) dξ = Ce−κξ−∫ a(ξ) dξ . (51)

Using (27) we obtain that in the zero approximation R2 = 0. We suppose that the vector
potential is such that R1 satisfies the imposed boundary conditions. Note that this result
(R2 = 0) is expected from equations (25) and (26), where in the zero approximation jz = 0.
Then the equations for R1 and R2 for zero-energy ground state (q = 0) read a−R1 = 0 and
a+R2 = 0, respectively. It is well known from SUSY quantum mechanics that only one of
these equations has a square integrable solution. We consider such a vector potential a(ξ) and
wavevector κ that the square integrable solution exists for R1. Then R2 = 0.

In the first-order perturbation theory for the energy of the ground state (ε0 = q2) we obtain

q2 =
∫∞

0 dξ F 2
1 j

2
z /ξ

2∫∞
0 dξ F 2

1

(52)

or explicitly

q2 = j 2
z

∫ ∞

0
dξ

1/ξ 2

jz/ξ + q
e−2κξ−2

∫
a(ξ) dξ

/∫ ∞

0
dξ

1

jz/ξ + q
e−2κξ−2

∫
a(ξ) dξ . (53)
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This is the equation for q. As we see, q is proportional to jz. Therefore we can write

q = ωjz jz → 0 (54)

where ω satisfies the equation

ω2 =
∫ ∞

0
dξ

1/ξ 2

1/ξ + ω
e−2κξ−2

∫
a(ξ) dξ

/∫ ∞

0
dξ

1

1/ξ + ω
e−2κξ−2

∫
a(ξ) dξ . (55)

In order to verify this result let us consider the vector potential a(ξ) = −γ /ξ for which the
exact solution for the ground state energy was obtained in the previous section. Substituting
this vector potential in (50) for the function F1 in the zero approximation of the perturbation
theory we obtain

F1 = C
ξγ√

jz/ξ + q
e−κξ (56)

and respectively

R1 = Cξγ e−κξ . (57)

This function satisfies the boundary conditions (16) when γ > 1/2 and κ > 0. Equation (55)
in this case can be written in the form

1 =
∫ ∞

0
dx

x2γ−1

1 + x
e−px

/∫ ∞

0
dx

x2γ+1

1 + x
e−px (58)

where we have introduced a new variable of integration x = ωξ and the notation p = 2κ/ω.
We reduce this equation with respect to p to the following one:

1 = 1

2γ (2γ + 1)

5(1 − 2γ, p)

5(−1 − 2γ, p)
(59)

where 5(a, x) is the incomplete 5-function. We can verify that p = 2γ is the solution of
this equation and thus ω = κ/γ . As a result for the ground state energy we obtain the same
result (49) as in section 4. Thus, we can conclude that the general result (54), (55) for the
ground state energy is correct. Note that using (28) we can obtain the result for the case
γ < −1/2.

We conclude that the asymptotic behaviour of the ground state energy for small jz for the
electron moving in the magnetic field with the vector potential a(ξ) is the following:

ε0 = q2 = ω2j 2
z jz → 0 (60)

where ω satisfies the equation (55).
Note that this result is applicable for such vector potentials a(ξ) for which the functions

F1 or R1 satisfy the necessary boundary conditions (34) or (16) and for which the integrals
in (55) exist. This takes place, for instance, for

a(ξ) = −γ /ξ 1+δ (61)

where δ > 0, γ > 0. Substituting this vector potential into (55) we obtain the equation for ω.
In the case γ < 0 it is necessary to use (28).

For the vector potential of the current-carrying wire a(ξ) = γ ln(ξ) the obtained result is
not applicable, because F1 or R1 in this case does not satisfy the necessary conditions at ξ = 0
and the integrals in (55) diverge in the vicinity of this point. This means that in this case the
Hamiltonian (20) does not have the zero-energy ground state for jz = 0.
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6. Conclusions

In this paper we study the ground state for the electron moving in the magnetic field of a
straight current with the axially symmetric distribution of the current density. The motion of
the electron in this magnetic field possesses SUSY with three supercharges. We show that
SUSY is broken, i.e. the energy of the ground state is non-zero.

An important point of this paper is that in the case (g = 2) when the Pauli Hamiltonian
possesses SUSY we reduced the set of two second-order differential equations (19) for the
eigenvalue problem to one second-order differential equation (32). This gives a possibility
for an arbitrary vector potential a(ξ) (with some restriction in order to satisfy the necessary
boundary condition for the wavefunction) to derive an asymptotic behaviour of the ground
state energy for a small total angular momentum ε0 = ω2j 2

z , where ω satisfies equation (55).
This result is applicable for the case of such a vector potential a(ξ) for which Hamiltonian (20)
(or equation (32)) at jz = 0 has the zero-energy eigensolution. Note that here we treat jz as a
parameter which tends to zero although in fact it is the total angular momentum which takes
the value jz = ±1/2,±3/2, . . . . Therefore the ground state energy ε0 does not reach the zero
value.

The obtained asymptotic behaviour of the ground state energy takes place, for instance,
in the case of a(ξ) = −γ /ξ , where |γ | > 1/2, and a(ξ) = −γ /ξ 1+δ , where δ > 0. Note, that
in the case of the vector potential a(ξ) = −γ /ξ the eigenvalue problem can be solved exactly.
We present in this case the explicit expression for the energy and wavefunction of the ground
state.

In conclusion, we would like to point out once more the motivation to consider the
presented examples. The vector potential a(ξ) = −γ /ξ is chosen from that point of view
that it is an exactly solvable example and on its basis we can verify our method. The vector
potential of the form (61) is the simplest example for which the proposed method can be
applicable. Nevertheless, note that the obtained result is applicable for all vector potentials
a(ξ) for which the Hamiltonian (20) (or equation (32)) at jz = 0 has the zero-energy eigenstate
and for which the integrals in (55) converge.

For the case of the vector potential of the current-carrying wire a(ξ) = γ ln(ξ) the obtained
result for the asymptotic behaviour of the ground state energy at small total angular momentum
is not applicable, but we can definitely state that for arbitrary vector potentials produced by
the straight current with the axially symmetric distribution of current density the energy of the
ground state is positive and cannot take zero value.
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